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ABSTRACT 

A numerical method is presented for calcu-

lating the cumulative distribution of a positive 

random variable from its moment-generating function. 

It involves an expansion of the rectangular function 

in Laguerre functions. As examples, the cumulative 

exponential and cumulative Poisson probability func-

tions are approximated.
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I 
A common problem is the caicuiJtion of the cumulative probability 

distribution	 x 
Q(x)	 p(y) dy, 0 < x	 (1) 

• of a positive random variable y of which one knows only the moment-

generating function (m. g. f.),
Co 

(s) _E(eYS) =$ eYS p(y) dy,	 (2) 

where p(y) is the probability density function (p. d. f.) of y. 

- In signal detection theory, for instance, y is related to the likelihood 

ratio, and I-Q(x) is the false-alarm or detection probability for a decision 

level x. Often the m. g. f. can be worked out rather easily, but it is 

	

•	 impossible to determine p(y) from p (s) analytically by, for instance, taking 

the inverse Laplace transform of (-s) or the inverse Fourier transform of 

A technique for calculating Q(x) numerically can be derived by writing 

(2)as
Q 	 = $ R(y/x)p (y) dy	 (3) 

where R(t) is the rectangular function 

R(t) = 1, 0 <t < 1; R(t) = 0, t >1. 	 (4) 

•	 One expands R(t) in a series of Laguerre functions, 

Co 

	

•	 • R(t) =e_kt/2	 am Lm(kt)	 (5) 
mO 

2 •	 where
a = k I l _kt/2 e 	 L (k t) dt =' 

M.	 m	 • 

2e	 FL	 (k) - L (k) l - a	 (6) 
m	 m-1 
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The series in (5) is to be truncated at a finite number M of terms. 

The cumulative distribution is 

Q(x)=a 
m m C (x),	 7 

M=O 

where the coefficients
CO 

Cm(X) = $ e_ky/2x Lm(kY/X) p(y)dy	 (8) 

can be expressed in terms of ji (-k/2x) and its derivatives. In particular, 

C 0 (x)=(-k/2x),	 (9) 

and by using the fomula 3 

L(t) =(-l)mtm/m! -	 (i)r() Lmr(t)	 (10) 

a recurrence relation for C m (x) is easily obtained. 

m 

•	 Cm(X) = 2m(m!)1{sm :
	 [ (s)] s = -k/Zx	

()r (I) C(x),	 (1 1) 

which facilitates numerical computation. 

The method was tried out with two very different distributions, 

the exponential,
p(y) =e, y > 0; p(y) = 0, y < 0,	 (12) 

whose m. g. f. is 
•	 (s) = (s_i) l, Rt s < 1,	 (13) 

and the Poisson,	 •CO 

p(y) = e	 ô(y-n)/n!	 (14) 

whose m.g.f. is	 • • 

(s)	 èxp [ X (e 5 - 1)]	 (15) 

	

Firstit was necessary to determine the best value of the scale para- • 	 • 

meter k when M terms are used. This was done by hunting the value of k 	 • 
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that yielded the minimum mean-square error 
M - l 

e = i -;
	

a m 2
	

(16) 

in fitting the truncated version of (5) to R(t) For M20, we found that 

k z43 gives a mean-square error 	 = 0.01567. The coefficients am are


listed in Table 1. 

For the exponential p. d. f. we list in Table 2 the percentage error in 

Q(x) for 0 < Q(x) < 1/2 and the percentage error in 1 - Q(x) for 1/2 < Q(x) < I. 

The relative error decreases with increasing x. 

For the Poissondistribution we evaluated Q(x) by the approximation 

method for values of x halfway between the integers and compared the results 

with the Poisson distribution summed from y = 0 to the greatest integer in x. 

Table 3 lists the percentage errors in Q(x) for 0 < Q(x) < 1/2 and in 1 - Q(x) 

for 1/2 < Q(x) < I. 

The accuracy is greatest near the mean and poorest in the tails of 

the Poisson distribution, and this can be expected in most applications. 

There exist other approximation methods best suited for the tails of a dis-

tribution. For large x the inverse Laplace transform of i (-s) can be 

approximated by the method of steepest descents. For x near 0, an 

approximation to Q(x) can be obtained from the asymptotic behavior  of 

L (-s) 
for large s. The method described here fills the gap. 

An alternative method is the Edgeworth series, but it has an 

asymptotic character that restricts its usefulness. 6 There is an optimum 

number of terms in the Edgeworth series, and if more are used, the 

ISM



accuracy decreases markedly. Numerical Fourier transformation of p (i w ), 

followed by numerical integration of the p. d. f. p(y), might be used in some 

cases, but would hardly be suitable for a discrete random variable like the 

Poisson-distributed one of our second example. 
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TABLE 1 

Coefficients of Lague rre Expansion 

m	 0	 1	 2	 3 4 5 6 

a	 2	 -2	 2	 -2 1.9999 -1.9992 1.9956 
ni 

m	 9 10 11 12 

a	 -1.7766 1.4460 -0.87710 0.15695 
m 

m	 15 16 17 18 

a	 0.071648 0. 33527 -0. 22910 -0. 18569 
m

7	 8 

-1.9800
	 1.9261 

13	 14 

0.41416 -0.49039 

19 
0.24351 

X	 0.1 

Error (07°) 0. 743 

X	 3.0 

Error (%) -0. 170

TABLE 2 

Exponential Distribution 

0.3 0.5 1.0 

0.561 0.422 -0.351 

4.0 5.0 6.0 

-0.0878 -0.0408 -0.0174

1.5 2.0 

-0.336 -0.285 

8.0 10.0 

-0.00239 -0.000224 

TABLE 3 

Poisson Distribution 

X 6 8 10 12 14 16 

Q 0. 00763 0.0374 0. 1185 0.2676 0,4656 o.6641 

Error (%) -59.6 -17. 6 -2.82 -0. 133 0. 00493 0. 135 

X 18 20 22 24 26 28	 30... 

Q 0.8195 0. 9170 0. 9673 0. 9888 0. 99669 0. 99914	 0.99980 

Error (%) 0.241 0. 735 1. 199 1. 379 -0.415 -20.2	 72.2
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